From Rest to Cognitive Engagement: EEG Markers of Tetris Performance

Document Type : Original Article

Authors

1 Department of Cognitive Sciences, Faculty of Psychology and Educational Sciences, University of Tehran, Tehran, Iran.

2 Cognitive science laboratory, Faculty of Psychology and Educational Sciences, University of Tehran, Tehran, Iran.

Abstract

Background: Video games like Tetris engage distinct cognitive processes, yet the neural mechanisms underlying gameplay remain incompletely understood. This study investigates how Tetris modulates brain activity patterns compared to resting state, focusing on oscillatory dynamics and their behavioral relevance.

Methods: We recorded 32-channel EEG in 32 participants during rest and Tetris gameplay. Spectral analysis identified power differences in key frequency bands (theta: 4-6Hz; alpha2: 10-11.5Hz; beta3: 28-29Hz). Cluster-based permutation tests (p<0.03, FDR-corrected) localized significant changes, while Spearman correlations and regression analyses examined performance relationships.

Results: Three main findings emerged: (1) Gameplay increased frontal theta (cognitive control) and occipital beta3 (visual processing) while decreasing parietal alpha2 (attention reallocation); (2) Regional band power correlations showed a shift in co-modulation patterns from stronger frontoparietal theta covariance (rest) to enhanced parieto-occipital synchrony (gameplay), reflecting task-specific regional engagement; (3) Frontal theta modulation predicted performance (R²=0.322, p=0.004), with stronger theta increases correlating with better scores (r=+0.57, p<0.01).

Conclusion: Tetris induces rapid changes, with frontal theta emerging as a key marker of cognitive adaptability. These findings demonstrate the utility of Tetris for studying neuroplasticity and suggest its potential as a paradigm for cognitive training interventions. Future research should explore longitudinal changes in these neural patterns with extended practice.

Keywords

Main Subjects


Abad-Perez, P., Molina-Payá, F. J., Martínez-Otero, L., Borrell, V., Redondo, R. L., & Brotons-Mas, J. R. (2022). NMDAr Blocking by MK801 Alters Hippocampal and Prefrontal Cortex Oscillations and Impairs Spatial Working Memory in Mice. https://doi.org/10.1101/2021.09.22.461383
Alekseichuk, I., Pabel, S. C., Antal, A., & Paulus, W. (2017). Intrahemispheric theta rhythm desynchronization impairs working memory. Restor Neurol Neurosci, 35(2), 147-158. https://doi.org/10.3233/RNN-160714
Baliki, M. N., Mansour, A. R., Baria, A. T., & Apkarian, A. V. (2014). Functional reorganization of the default mode network across chronic pain conditions. PLoS One, 9(9), e106133. https://doi.org/10.1371/journal.pone.0106133
Barone, J., & Rossiter, H. E. (2021). Understanding the Role of Sensorimotor Beta Oscillations. Front Syst Neurosci, 15, 655886. https://doi.org/10.3389/fnsys.2021.655886
Benedek, M., Schickel, R. J., Jauk, E., Fink, A., & Neubauer, A. C. (2014). Alpha power increases in right parietal cortex reflects focused internal attention. Neuropsychologia, 56(100), 393-400. https://doi.org/10.1016/j.neuropsychologia.2014.02.010
Canolty, R. T., & Knight, R. T. (2010). The functional role of cross-frequency coupling. Trends Cogn Sci, 14(11), 506-515. https://doi.org/10.1016/j.tics.2010.09.001
Caselles-Pina, L., Sujar, A., Quesada-Lopez, A., & Delgado-Gomez, D. (2023). Adherence, frequency, and long-term follow-up of video game-based treatments in patients with attention-deficit/hyperactivity disorder: A systematic review. Brain Behav, 13(11), e3265. https://doi.org/10.1002/brb3.3265
Cavanagh, J. F., & Frank, M. J. (2014). Frontal theta as a mechanism for cognitive control. Trends Cogn Sci, 18(8), 414-421. https://doi.org/10.1016/j.tics.2014.04.012
Clemenson, G. D., Stark, S. M., Rutledge, S. M., & Stark, C. E. L. (2020). Enriching hippocampal memory function in older adults through video games. Behav Brain Res, 390, 112667. https://doi.org/10.1016/j.bbr.2020.112667
Costers, L., Van Schependom, J., Laton, J., Baijot, J., Sjogard, M., Wens, V., De Tiege, X., Goldman, S., D'Haeseleer, M., D'Hooghe M, B., Woolrich, M., & Nagels, G. (2021). The role of hippocampal theta oscillations in working memory impairment in multiple sclerosis. Hum Brain Mapp, 42(5), 1376-1390. https://doi.org/10.1002/hbm.25299
De Luca, V., Schena, A., Covino, A., Di Bitonto, P., Potenza, A., Barba, M. C., D’Errico, G., & De Paolis, L. T. (2024). Serious Games for the Treatment of Children with ADHD: The BRAVO Project. Information Systems Frontiers. https://doi.org/10.1007/s10796-023-10457-8
Di Dona, G., & Ronconi, L. (2023). Beta oscillations in vision: a (preconscious) neural mechanism for the dorsal visual stream? Front Psychol, 14, 1296483. https://doi.org/10.3389/fpsyg.2023.1296483
DiNuzzo, M., Mascali, D., Bussu, G., Moraschi, M., Guidi, M., Macaluso, E., Mangia, S., & Giove, F. (2022). Hemispheric functional segregation facilitates target detection during sustained visuospatial attention. Hum Brain Mapp, 43(15), 4529-4539. https://doi.org/10.1002/hbm.25970
Domic-Siede, M., Irani, M., Valdes, J., Perrone-Bertolotti, M., & Ossandon, T. (2021). Theta activity from frontopolar cortex, mid-cingulate cortex and anterior cingulate cortex shows different roles in cognitive planning performance. Neuroimage, 226, 117557. https://doi.org/10.1016/j.neuroimage.2020.117557
Ewing, K. C., Fairclough, S. H., & Gilleade, K. (2016). Evaluation of an Adaptive Game that Uses EEG Measures Validated during the Design Process as Inputs to a Biocybernetic Loop. Front Hum Neurosci, 10, 223. https://doi.org/10.3389/fnhum.2016.00223
Gentile, M., & Lieto, A. (2022). The role of mental rotation in TetrisTM gameplay: An ACT-R computational cognitive model. Cognitive Systems Research, 73, 1-11. https://doi.org/10.1016/j.cogsys.2021.12.005
Green, C. S., & Bavelier, D. (2003). Action video game modifies visual selective attention. Nature, 423(6939), 534-537. https://doi.org/10.1038/nature01647
Green, C. S., & Bavelier, D. (2006). Effect of action video games on the spatial distribution of visuospatial attention. J Exp Psychol Hum Percept Perform, 32(6), 1465-1478. https://doi.org/10.1037/0096-1523.32.6.1465
Green, C. S., & Bavelier, D. (2012). Learning, attentional control, and action video games. Curr Biol, 22(6), R197-206. https://doi.org/10.1016/j.cub.2012.02.012
Griffiths, B. J., Mayhew, S. D., Mullinger, K. J., Jorge, J., Charest, I., Wimber, M., & Hanslmayr, S. (2019). Alpha/beta power decreases track the fidelity of stimulus-specific information. Elife, 8. https://doi.org/10.7554/eLife.49562
Hanslmayr, S., Staresina, B. P., & Bowman, H. (2016). Oscillations and Episodic Memory: Addressing the Synchronization/Desynchronization Conundrum. Trends Neurosci, 39(1), 16-25. https://doi.org/10.1016/j.tins.2015.11.004
Hu, W., Fu, X., Qian, R., Wei, X., Ji, X., & Niu, C. (2012). Changes in the default mode network in the prefrontal lobe, posterior cingulated cortex and hippocampus of heroin users. Neural Regen Res, 7(18), 1386-1391. https://doi.org/10.3969/j.issn.1673-5374.2012.18.004
Kelly, S. P., Lalor, E. C., Reilly, R. B., & Foxe, J. J. (2006). Increases in alpha oscillatory power reflect an active retinotopic mechanism for distracter suppression during sustained visuospatial attention. J Neurophysiol, 95(6), 3844-3851. https://doi.org/10.1152/jn.01234.2005
Lau-Zhu, A., Holmes, E. A., Butterfield, S., & Holmes, J. (2017). Selective Association Between Tetris Game Play and Visuospatial Working Memory: A Preliminary Investigation. Appl Cogn Psychol, 31(4), 438-445. https://doi.org/10.1002/acp.3339
Lee, T. W., & Xue, S. W. (2018). Functional connectivity maps based on hippocampal and thalamic dynamics may account for the default-mode network. Eur J Neurosci, 47(5), 388-398. https://doi.org/10.1111/ejn.13828
Leech, R., Kamourieh, S., Beckmann, C. F., & Sharp, D. J. (2011). Fractionating the default mode network: distinct contributions of the ventral and dorsal posterior cingulate cortex to cognitive control. J Neurosci, 31(9), 3217-3224. https://doi.org/10.1523/jneurosci.5626-10.2011  
Lendner, J. D., Harler, U., Daume, J., Engel, A. K., Zollner, C., Schneider, T. R., & Fischer, M. (2023). Oscillatory and aperiodic neuronal activity in working memory following anesthesia. Clin Neurophysiol, 150, 79-88. https://doi.org/10.1016/j.clinph.2023.03.005
Maki-Marttunen, V., Velinov, A., & Nieuwenhuis, S. (2025). Strength of Low-Frequency EEG Phase Entrainment to External Stimuli Is Associated with Fluctuations in the Brain's Internal State. eNeuro, 12(1). https://doi.org/10.1523/ENEURO.0064-24.2024
Mecarelli, O. (2019). Electrode placement systems and montages. Clinical Electroencephalography, 35-52.
Min Park, Y., Park, J., Young Kim, I., Koo Kang, J., & Pyo Jang, D. (2022). Interhemispheric theta coherence in the hippocampus for successful object-location memory in human intracranial encephalography. Neurosci Lett, 786, 136769. https://doi.org/10.1016/j.neulet.2022.136769
Parto-Dezfouli, M., Vezoli, J., Bosman, C. A., & Fries, P. (2023). Enhanced behavioral performance through interareal gamma and beta synchronization. Cell Rep, 42(10), 113249. https://doi.org/10.1016/j.celrep.2023.113249
Peylo, C., Hilla, Y., & Sauseng, P. (2021). Cause or consequence? Alpha oscillations in visuospatial attention. Trends Neurosci, 44(9), 705-713. https://doi.org/10.1016/j.tins.2021.05.004
Pfurtscheller, G., Stancak, A., Jr., & Neuper, C. (1996). Event-related synchronization (ERS) in the alpha band--an electrophysiological correlate of cortical idling: a review. Int J Psychophysiol, 24(1-2), 39-46. https://doi.org/10.1016/s0167-8760(96)00066-9
Powers, K. L., Brooks, P. J., Aldrich, N. J., Palladino, M. A., & Alfieri, L. (2013). Effects of video-game play on information processing: a meta-analytic investigation. Psychon Bull Rev, 20(6), 1055-1079. https://doi.org/10.3758/s13423-013-0418-z
Raichle, M. E. (2015). The brain's default mode network. Annu Rev Neurosci, 38, 433-447. https://doi.org/10.1146/annurev-neuro-071013-014030
Riddle, J., McPherson, T., Sheikh, A., Shin, H., Hadar, E., & Frohlich, F. (2024). Internal Representations Are Prioritized by Frontoparietal Theta Connectivity and Suppressed by alpha Oscillation Dynamics: Evidence from Concurrent Transcranial Magnetic Stimulation EEG and Invasive EEG. J Neurosci, 44(15). https://doi.org/10.1523/JNEUROSCI.1381-23.2024
Rodrigo-Yanguas, M., Gonzalez-Tardon, C., Bella-Fernandez, M., & Blasco-Fontecilla, H. (2022). Serious Video Games: Angels or Demons in Patients With Attention-Deficit Hyperactivity Disorder? A Quasi-Systematic Review. Front Psychiatry, 13, 798480. https://doi.org/10.3389/fpsyt.2022.798480
Sauseng, P., Klimesch, W., Schabus, M., & Doppelmayr, M. (2005). Fronto-parietal EEG coherence in theta and upper alpha reflect central executive functions of working memory. Int J Psychophysiol, 57(2), 97-103. https://doi.org/10.1016/j.ijpsycho.2005.03.018
Schneider, D., Herbst, S. K., Klatt, L. I., & Wostmann, M. (2022). Target enhancement or distractor suppression? Functionally distinct alpha oscillations form the basis of attention. Eur J Neurosci, 55(11-12), 3256-3265. https://doi.org/10.1111/ejn.15309
Soltani Zangbar, H., Ghadiri, T., Seyedi Vafaee, M., Ebrahimi Kalan, A., Fallahi, S., Ghorbani, M., & Shahabi, P. (2020). Theta Oscillations Through Hippocampal/Prefrontal Pathway: Importance in Cognitive Performances. Brain Connect, 10(4), 157-169. https://doi.org/10.1089/brain.2019.0733
Stone, J. V. (2002). Independent component analysis: an introduction. Trends in cognitive sciences, 6(2), 59-64.
Tadel, F., Baillet, S., Mosher, J. C., Pantazis, D., & Leahy, R. M. (2011). Brainstorm: a user-friendly application for MEG/EEG analysis. Comput Intell Neurosci, 2011, 879716. https://doi.org/10.1155/2011/879716
van Schouwenburg, M. R., Zanto, T. P., & Gazzaley, A. (2016). Spatial Attention and the Effects of Frontoparietal Alpha Band Stimulation. Front Hum Neurosci, 10, 658. https://doi.org/10.3389/fnhum.2016.00658
Ye, Z., Heldmann, M., Herrmann, L., Bruggemann, N., & Munte, T. F. (2022). Altered alpha and theta oscillations correlate with sequential working memory in Parkinson's disease. Brain Commun, 4(3), fcac096. https://doi.org/10.1093/braincomms/fcac096
Yu, S., Muckschel, M., & Beste, C. (2022). Superior frontal regions reflect the dynamics of task engagement and theta band-related control processes in time-on task effects. Sci Rep, 12(1), 846. https://doi.org/10.1038/s41598-022-04972-y
Zhozhikashvili, N., Zakharov, I., Ismatullina, V., Feklicheva, I., Malykh, S., & Arsalidou, M. (2022). Parietal Alpha Oscillations: Cognitive Load and Mental Toughness. Brain Sci, 12(9). https://doi.org/10.3390/brainsci12091135
Volume 1, Issue 2
July 2025
Pages 30-43
  • Receive Date: 07 May 2025
  • Revise Date: 27 May 2025
  • Accept Date: 20 June 2025
  • First Publish Date: 01 July 2025
  • Publish Date: 01 July 2025