Abad-Perez, P., Molina-Payá, F. J., Martínez-Otero, L., Borrell, V., Redondo, R. L., & Brotons-Mas, J. R. (2022). NMDAr Blocking by MK801 Alters Hippocampal and Prefrontal Cortex Oscillations and Impairs Spatial Working Memory in Mice.
https://doi.org/10.1101/2021.09.22.461383
Alekseichuk, I., Pabel, S. C., Antal, A., & Paulus, W. (2017). Intrahemispheric theta rhythm desynchronization impairs working memory.
Restor Neurol Neurosci,
35(2), 147-158.
https://doi.org/10.3233/RNN-160714
Baliki, M. N., Mansour, A. R., Baria, A. T., & Apkarian, A. V. (2014). Functional reorganization of the default mode network across chronic pain conditions.
PLoS One,
9(9), e106133.
https://doi.org/10.1371/journal.pone.0106133
Benedek, M., Schickel, R. J., Jauk, E., Fink, A., & Neubauer, A. C. (2014). Alpha power increases in right parietal cortex reflects focused internal attention.
Neuropsychologia,
56(100), 393-400.
https://doi.org/10.1016/j.neuropsychologia.2014.02.010
Caselles-Pina, L., Sujar, A., Quesada-Lopez, A., & Delgado-Gomez, D. (2023). Adherence, frequency, and long-term follow-up of video game-based treatments in patients with attention-deficit/hyperactivity disorder: A systematic review.
Brain Behav,
13(11), e3265.
https://doi.org/10.1002/brb3.3265
Clemenson, G. D., Stark, S. M., Rutledge, S. M., & Stark, C. E. L. (2020). Enriching hippocampal memory function in older adults through video games.
Behav Brain Res,
390, 112667.
https://doi.org/10.1016/j.bbr.2020.112667
Costers, L., Van Schependom, J., Laton, J., Baijot, J., Sjogard, M., Wens, V., De Tiege, X., Goldman, S., D'Haeseleer, M., D'Hooghe M, B., Woolrich, M., & Nagels, G. (2021). The role of hippocampal theta oscillations in working memory impairment in multiple sclerosis.
Hum Brain Mapp,
42(5), 1376-1390.
https://doi.org/10.1002/hbm.25299
De Luca, V., Schena, A., Covino, A., Di Bitonto, P., Potenza, A., Barba, M. C., D’Errico, G., & De Paolis, L. T. (2024). Serious Games for the Treatment of Children with ADHD: The BRAVO Project.
Information Systems Frontiers.
https://doi.org/10.1007/s10796-023-10457-8
DiNuzzo, M., Mascali, D., Bussu, G., Moraschi, M., Guidi, M., Macaluso, E., Mangia, S., & Giove, F. (2022). Hemispheric functional segregation facilitates target detection during sustained visuospatial attention.
Hum Brain Mapp,
43(15), 4529-4539.
https://doi.org/10.1002/hbm.25970
Domic-Siede, M., Irani, M., Valdes, J., Perrone-Bertolotti, M., & Ossandon, T. (2021). Theta activity from frontopolar cortex, mid-cingulate cortex and anterior cingulate cortex shows different roles in cognitive planning performance.
Neuroimage,
226, 117557.
https://doi.org/10.1016/j.neuroimage.2020.117557
Ewing, K. C., Fairclough, S. H., & Gilleade, K. (2016). Evaluation of an Adaptive Game that Uses EEG Measures Validated during the Design Process as Inputs to a Biocybernetic Loop.
Front Hum Neurosci,
10, 223.
https://doi.org/10.3389/fnhum.2016.00223
Green, C. S., & Bavelier, D. (2006). Effect of action video games on the spatial distribution of visuospatial attention.
J Exp Psychol Hum Percept Perform,
32(6), 1465-1478.
https://doi.org/10.1037/0096-1523.32.6.1465
Griffiths, B. J., Mayhew, S. D., Mullinger, K. J., Jorge, J., Charest, I., Wimber, M., & Hanslmayr, S. (2019). Alpha/beta power decreases track the fidelity of stimulus-specific information.
Elife,
8.
https://doi.org/10.7554/eLife.49562
Hanslmayr, S., Staresina, B. P., & Bowman, H. (2016). Oscillations and Episodic Memory: Addressing the Synchronization/Desynchronization Conundrum.
Trends Neurosci,
39(1), 16-25.
https://doi.org/10.1016/j.tins.2015.11.004
Hu, W., Fu, X., Qian, R., Wei, X., Ji, X., & Niu, C. (2012). Changes in the default mode network in the prefrontal lobe, posterior cingulated cortex and hippocampus of heroin users.
Neural Regen Res,
7(18), 1386-1391.
https://doi.org/10.3969/j.issn.1673-5374.2012.18.004
Kelly, S. P., Lalor, E. C., Reilly, R. B., & Foxe, J. J. (2006). Increases in alpha oscillatory power reflect an active retinotopic mechanism for distracter suppression during sustained visuospatial attention.
J Neurophysiol, 95(6), 3844-3851.
https://doi.org/10.1152/jn.01234.2005
Lau-Zhu, A., Holmes, E. A., Butterfield, S., & Holmes, J. (2017). Selective Association Between Tetris Game Play and Visuospatial Working Memory: A Preliminary Investigation.
Appl Cogn Psychol,
31(4), 438-445.
https://doi.org/10.1002/acp.3339
Lee, T. W., & Xue, S. W. (2018). Functional connectivity maps based on hippocampal and thalamic dynamics may account for the default-mode network.
Eur J Neurosci,
47(5), 388-398.
https://doi.org/10.1111/ejn.13828
Leech, R., Kamourieh, S., Beckmann, C. F., & Sharp, D. J. (2011). Fractionating the default mode network: distinct contributions of the ventral and dorsal posterior cingulate cortex to cognitive control.
J Neurosci,
31(9), 3217-3224.
https://doi.org/10.1523/jneurosci.5626-10.2011
Lendner, J. D., Harler, U., Daume, J., Engel, A. K., Zollner, C., Schneider, T. R., & Fischer, M. (2023). Oscillatory and aperiodic neuronal activity in working memory following anesthesia.
Clin Neurophysiol,
150, 79-88.
https://doi.org/10.1016/j.clinph.2023.03.005
Maki-Marttunen, V., Velinov, A., & Nieuwenhuis, S. (2025). Strength of Low-Frequency EEG Phase Entrainment to External Stimuli Is Associated with Fluctuations in the Brain's Internal State.
eNeuro,
12(1).
https://doi.org/10.1523/ENEURO.0064-24.2024
Mecarelli, O. (2019). Electrode placement systems and montages. Clinical Electroencephalography, 35-52.
Min Park, Y., Park, J., Young Kim, I., Koo Kang, J., & Pyo Jang, D. (2022). Interhemispheric theta coherence in the hippocampus for successful object-location memory in human intracranial encephalography.
Neurosci Lett,
786, 136769.
https://doi.org/10.1016/j.neulet.2022.136769
Parto-Dezfouli, M., Vezoli, J., Bosman, C. A., & Fries, P. (2023). Enhanced behavioral performance through interareal gamma and beta synchronization.
Cell Rep,
42(10), 113249.
https://doi.org/10.1016/j.celrep.2023.113249
Pfurtscheller, G., Stancak, A., Jr., & Neuper, C. (1996). Event-related synchronization (ERS) in the alpha band--an electrophysiological correlate of cortical idling: a review.
Int J Psychophysiol,
24(1-2), 39-46.
https://doi.org/10.1016/s0167-8760(96)00066-9
Powers, K. L., Brooks, P. J., Aldrich, N. J., Palladino, M. A., & Alfieri, L. (2013). Effects of video-game play on information processing: a meta-analytic investigation.
Psychon Bull Rev,
20(6), 1055-1079.
https://doi.org/10.3758/s13423-013-0418-z
Riddle, J., McPherson, T., Sheikh, A., Shin, H., Hadar, E., & Frohlich, F. (2024). Internal Representations Are Prioritized by Frontoparietal Theta Connectivity and Suppressed by alpha Oscillation Dynamics: Evidence from Concurrent Transcranial Magnetic Stimulation EEG and Invasive EEG.
J Neurosci,
44(15).
https://doi.org/10.1523/JNEUROSCI.1381-23.2024
Rodrigo-Yanguas, M., Gonzalez-Tardon, C., Bella-Fernandez, M., & Blasco-Fontecilla, H. (2022). Serious Video Games: Angels or Demons in Patients With Attention-Deficit Hyperactivity Disorder? A Quasi-Systematic Review.
Front Psychiatry,
13, 798480.
https://doi.org/10.3389/fpsyt.2022.798480
Sauseng, P., Klimesch, W., Schabus, M., & Doppelmayr, M. (2005). Fronto-parietal EEG coherence in theta and upper alpha reflect central executive functions of working memory.
Int J Psychophysiol,
57(2), 97-103.
https://doi.org/10.1016/j.ijpsycho.2005.03.018
Schneider, D., Herbst, S. K., Klatt, L. I., & Wostmann, M. (2022). Target enhancement or distractor suppression? Functionally distinct alpha oscillations form the basis of attention.
Eur J Neurosci,
55(11-12), 3256-3265.
https://doi.org/10.1111/ejn.15309
Soltani Zangbar, H., Ghadiri, T., Seyedi Vafaee, M., Ebrahimi Kalan, A., Fallahi, S., Ghorbani, M., & Shahabi, P. (2020). Theta Oscillations Through Hippocampal/Prefrontal Pathway: Importance in Cognitive Performances.
Brain Connect,
10(4), 157-169.
https://doi.org/10.1089/brain.2019.0733
Stone, J. V. (2002). Independent component analysis: an introduction. Trends in cognitive sciences, 6(2), 59-64.
Tadel, F., Baillet, S., Mosher, J. C., Pantazis, D., & Leahy, R. M. (2011). Brainstorm: a user-friendly application for MEG/EEG analysis.
Comput Intell Neurosci,
2011, 879716.
https://doi.org/10.1155/2011/879716
van Schouwenburg, M. R., Zanto, T. P., & Gazzaley, A. (2016). Spatial Attention and the Effects of Frontoparietal Alpha Band Stimulation.
Front Hum Neurosci,
10, 658.
https://doi.org/10.3389/fnhum.2016.00658
Ye, Z., Heldmann, M., Herrmann, L., Bruggemann, N., & Munte, T. F. (2022). Altered alpha and theta oscillations correlate with sequential working memory in Parkinson's disease.
Brain Commun,
4(3), fcac096.
https://doi.org/10.1093/braincomms/fcac096
Yu, S., Muckschel, M., & Beste, C. (2022). Superior frontal regions reflect the dynamics of task engagement and theta band-related control processes in time-on task effects.
Sci Rep,
12(1), 846.
https://doi.org/10.1038/s41598-022-04972-y
Zhozhikashvili, N., Zakharov, I., Ismatullina, V., Feklicheva, I., Malykh, S., & Arsalidou, M. (2022). Parietal Alpha Oscillations: Cognitive Load and Mental Toughness.
Brain Sci,
12(9).
https://doi.org/10.3390/brainsci12091135